57 research outputs found

    Iron phthalocyanine and MnOx composite catalysts for microbial fuel cell applications

    Get PDF
    AbstractA low cost iron phthalocyanine (FePc)-MnOx composite catalyst was prepared for the oxygen reduction reaction (ORR) in the cathode of microbial fuel cells (MFCs).The catalysts were characterised using rotating ring disc electrode technique. The n number of electrons transferred, and H2O2 production from ORR was investigated. The FePc–MnOx composite catalyst showed higher ORR reduction current than FePc and Pt in low overpotential region. MFC with composite catalysts on the cathode was tested and compared to Pt and FePc cathodes. The cell performance was evaluated in buffered primary clarifier influent from wastewater treatment plant. The membrane-less single chamber MFC generated more power with composite FePcMnOx/MON air cathodes (143mWm−2) than commercial platinum catalyst (140mWm−2) and unmodified FePc/MON (90mWm−2), which is consistent with the RRDE study.The improvement was due to two mechanisms which abate H2O2 release from the composite. H2O2 is the reactant in two processes: (i) chemical regeneration of MnOx after electro-reduction to Mn2+, and (ii) peroxide undergoing chemical disproportionation to O2 and H2O on an electrochemically aged manganese surface retained in the film. Process (i) has the potential to sustain electrochemical reduction of MnOx at cathode potentials as high as 1.0VRHE

    Biological and microbial fuel cells

    Get PDF
    Biological fuel cells have attracted increasing interest in recent years because of their applications in environmental treatment, energy recovery, and small-scale power sources. Biological fuel cells are capable of producing electricity in the same way as a chemical fuel cell: there is a constant supply of fuel into the anode and a constant supply of oxidant into the cathode; however, typically the fuel is a hydrocarbon compound present in the wastewater, for example. Microbial fuel cells (MFCs) are also a promising technology for efficient wastewater treatment and generating energy as direct electricity for onsite remote application. MFCs are obtained when catalyst layer used into classical fuel cells (polymer electrolyte fuel cell) is replaced with electrogenic bacteria. A particular case of biological fuel cell is represented by enzyme-based fuel cells, when the catalyst layer is obtained by immobilization of enzyme on the electrode surface. These cells are of particular interest in biomedical research and health care and in environmental monitoring and are used as the power source for portable electronic devices. The technology developed for fabrication of enzyme electrodes is described. Different enzyme immobilization methods using layered structures with self-assembled monolayers and entrapment of enzymes in polymer matrixes are reviewed. The performances of enzymatic biofuel cells are summarized and approaches on further development to overcome current challenges are discussed. This innovative technology will have a major impact and benefit to medical science and clinical research, health care management, and energy production from renewable sources. Applications and advantages of using MFCs for wastewater treatment are described, including organic matter removal efficiency and electricity generation. Factors affecting the performance of MFC are summarized and further development needs are accentuated

    Electrochemical detection of non-esterified fatty acid by layer-by-layer assembled enzyme electrodes

    Get PDF
    AbstractIn this study, detection and measurement of non-esterified fatty acids (NEFA) concentration has been achieved by electrochemical method in one operation step. Multilayer films of poly(dimethyldiallyammonium chloride) (PDA) wrapped multi-wall carbon nanotubes (MWCNTs) and two enzymes acyl-CoA synthetase (ACS) and acyl-CoA oxidase (ACOD) were assembled on a carbon screen printed electrode by the layer-by-layer (LbL) immobilization. The fine polymer–enzyme layers produced by the LbL method, allowed mass transport from the reactant cascading down the layers to accomplish the two-step enzyme reactions. The polymer–CNTs and enzyme modified electrode exhibited good electrocatalytical property retaining enzyme activity. Linear increase of anodic current from H2O2 produced from NEFA oxidation was observed with the increasing concentrations of oleic acid. These results indicate a promising technique for a simple, rapid one-step determination of NEFA for diabetes management

    Shop The Look: Building a Large Scale Visual Shopping System at Pinterest

    Full text link
    As online content becomes ever more visual, the demand for searching by visual queries grows correspondingly stronger. Shop The Look is an online shopping discovery service at Pinterest, leveraging visual search to enable users to find and buy products within an image. In this work, we provide a holistic view of how we built Shop The Look, a shopping oriented visual search system, along with lessons learned from addressing shopping needs. We discuss topics including core technology across object detection and visual embeddings, serving infrastructure for realtime inference, and data labeling methodology for training/evaluation data collection and human evaluation. The user-facing impacts of our system design choices are measured through offline evaluations, human relevance judgements, and online A/B experiments. The collective improvements amount to cumulative relative gains of over 160% in end-to-end human relevance judgements and over 80% in engagement. Shop The Look is deployed in production at Pinterest.Comment: 10 pages, 7 figures, Accepted to KDD'2

    How to go beyond C1 products with electrochemical reduction of CO2

    Get PDF
    The electrochemical reduction of CO2 to produce fuels and value-added organic chemicals is of great potential, providing a mechanism to convert and store renewable energy within a carbon-neutral energy circle. Currently the majority of studies report C1 products such as carbon monoxide and formate as the major CO2 reduction products. A particularly challenging goal within CO2 electrochemical reduction is the pursuit of multi-carbon (C2+) products which have been proposed to enable a more economically viable value chain. This review summaries recent development across electro-, photoelectro- and bioelectro-catalyst developments. It also explores the role of device design and operating conditions in enabling C–C bond generation

    Porous Bilayer Electrode‐Guided Gas Diffusion for Enhanced CO 2 Electrochemical Reduction

    Get PDF
    Comparing with the massive efforts in developing innovative catalyst materials system and technologies, structural design of cells has attracted less attention on the road toward high‐performance electrochemical CO2 reduction reaction (eCO2RR). Herein, a hybrid gas diffusion electrode‐based reaction cell is proposed using highly porous carbon paper (CP) and graphene aerogels (GAs), which is expected to offer directional diffusion of gas molecules onto the catalyst bed, to sustain a high performance in CO2 conversion. The above‐mentioned hypothesis is supported by the experimental and simulation results, which show that the CP + GA combined configuration increases the Faraday efficiency (FE) from ≈60% to over 94% toward carbon monoxide (CO) and formate production compared with a CP only cell with Cu2O as the catalyst. It also suppresses the undesirable side reaction–hydrogen evolution over 65 times than the conventional H‐type cell (H‐cell). By combining with advanced catalysts with high selectivity, a 100% FE of the cell with a high current density can be realized. The described strategy sheds an extra light on future development of eCO2RR with a structural design of cell‐enabled high CO2 conversion

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore